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Instabilities of dynamic thermocapillary 
liquid layers. 

Part 2. Surface-wave instabilities 

By MARC K. SMITH? AND STEPHEN H. DAVIS 
Department of Engineering Sciences and Applied Mathematics, The Technological Institute, 

Northwestern University, Evanston, Illinois 60201 

(Received 7 October 1982 and in revised form 18 January 1983) 

A planar liquid layer is bounded below by a rigid plate and above by an interface 
with a passive gas. A steady shear flow is set up by imposing a temperature gradient 
along the layer and driving the motion by thermocapillarity. This dynamic state is 
susceptible to surface-wave instabilities that couple the interfacial deflection to the 
underlying shear flow. These instabilities are found to be directly related to the 
two-dimensional waves on an isothermal layer subject to wind shear as described by 
Miles and by Smith & Davis. Hence the surface-tension gradients are important only 
in that they drive the basic shear flow. The surface-wave stability characteristics for 
liquid layers with and without return-flow profiles are presented, and special 
attention is paid to long-wave instabilities. Comparisons are made with available 
experimental observations. 

1. Introduction 
In Part 1 of this work (Smith & Davis 1983, hereinafter refered to as SD) we 

formulated models for thermocapillary dynamics in thin two-dimensional liquid 
layers. We then analysed the convective instabilities of such flows and found both 
stationary Marangoni convection (as longitudinal roll cells) and a new class of 
instabilities in the form of travelling hydrothermal waves. These waves are of a 
thermal origin and are present even when surface deflection is absent. In the present 
work we focus on surface-wave instabilities in the same model layers. 

The surface-wave instabilities we find are travelling waves that couple surface 
deflections with the underlying bulk shear flow. They are closely related to the 
instabilities sustained by isothermal liquid layers subject to prescribed wind stresses 
as analysed by Miles (1960) and Smith & Davis (1982). Thus the imposed temperature 
gradient and consequent surface-tension gradient drive the basic shear flow but have 
little effect on the surface-wave instabilities. The present work addresses only 
two-dimensional instabilities even though Squire’s theorem does not hold in the 
present non-isothermal flow. 

Finally, we combine the results of SD with the present work and discuss the 
preferred mode of instability present in thermocapillary layers. The results of the 
calculations are compared with available experimental observations. 

t Present address : Department of Mathematics, Massachusetts Institute of Technology, 
Cambridge, Massachusetts 02139. 
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2. Problem formulation 
2.1.  The mathematical model 

We wish to consider the same physical system as in SD in which a liquid layer of 
mean depth d undergoes motions due to thermocapillarity on its liquid-gas interface. 
We use the same model, the same notation and the same scalings under which the 
following dimensionless groups arise : the Reynolds number R, Prandtl number Pr, 
surface Biot number B and the surface-tension number S. Unlike SD, we restrict 
ourselves to two-dimensional flows so that we have (non-dimensional) Cartesian 
coordinates ( x ,  z )  with corresponding velocities (u, w). However, we allow significant 
deflection of the interface located a t  z = 1 +y(x, t ) .  This surface has the following unit 
normal and tangential vectors : 

n = (-%, 1 ) / X  (2.1 a )  

t = ( 1  > % ) / N ,  (2.1 6 )  
where N = ( 1  + (2.1 c )  

The alphabetic subscripts denote partial differentiation. 
On the free surface the normal stress balances the surface tension times curvature, 

and the tangential stress balances the gradient of surface tension along the interface. 
This can be expressed through the following vector equation: 

aijnj = n i [ ( X R - l - T ) ~ ( r ) ] - t t r [ T , j t j ]  on z = l + p ( z , t ) .  ( 2 . 2 ~ )  

Here aij is the stress tensor of the liquid, 

g.. 22 = -pa..+&. 83 837 (2 .2b )  

defined in terms of the pressure p and the shear-rate tensor 

“j = V i , j + V j , Z ,  ( 2 . 2 4  

~ ( p )  is twice the mean curvature of the free surface, 

47) = r l z z / p ,  ( 2 . 2 d )  

SR-I - T is the surface tension of the interface, and the last term in ( 2 . 2 ~ )  represents 
the gradient in sufrace tension along the interface in the tangential direction. Commas 
denote spatial differentiation, Sij is the Kronecker delta and the summation convention 
is used over the range i = 1 , 3 .  The bounding gas is passive with a constant pressure 
taken equal to zero. The kinematic condition on the free surface is written as 

(2 .3)  w =  qt+u?, on z = l + ? ( x , t ) .  

The equality of heat flux a t  the free surface between the layer and the bounding gas 
requires 

-!Pin, = B(T-T,)+& on z = l+r(z,t). (2 .4)  

Here T,  is the temperature of the bounding gas far from the interface and Q is an 
imposed heat flux to the surrounding environment that is determined by the 
particular basic-state solution under consideration. Note that Q is not an independent 
parameter. 

On the rigid plane there is no slip and zero heat flux: 

v i=O on z = O ,  (2 .5)  

= O  on z = O .  
i3T - 
a2 
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The governing equations for the liquid layer are the Navier-Stokes equations, the 

RP! +vjvi,,] = -p,i+V2vi, ( 2 . 7 ~ )  

energy equation and the continuity equation : 

R P r p !  + v i T i ]  = V 2 T ,  (2.7b) 

vi,i = 0. ( 2 . 7 ~ )  

2.2. The basic states 

We consider the same parallel-flow solutions to (2.1)-(2.7) as do SD. These are the 
linear-flow solution and the return-flow solution. They can be combined as follows : 

a = G’(l)Z+@Z’(l) (22-24, (2.8a) 

i8 = 0,  (2.8b) 

pz = @”(l), ( 2 . 8 ~ )  

r = - a’( 1 ) x + R Pr a’( 1 ) (&-”( 1 ) ( 1 - z4) + $[a’( 1 )  - a”( 1 )] ( 1 - z 3 ) } ,  (2.8 d )  

?j = 0, (2.8e) 

The unit normal and tangential vectors to the free surface are given as 

N = (0,1) = nl,z,,, (2.8h) 

T =  ( 1 , O )  tlTZ-,. (2.8i) 

When a’(1) = 1 and d ’ ( 1 )  = 0 we obtain the linear-flow solution. When ~ ’ ( 1 )  = 1 and 
~ ” ( 1 )  = 

The linear-flow solution is again exact, while the return-flow solution now 
represents only an approximate core flow valid for slot aspect ratio A-tO. Sen & 
Davis (1982) show that this core flow is a valid approximate solution only if 

we obtain the return-flow solution. 

S-’=O(A4) as A-tO. (2.9) 

Thus the surface tension must be very large to sustain a nearly parallel flow in the 
slot. See SD, $2.2, for further discussion. 

2.3. The linearized disturbance equations 

In a standard way we apply infinitesimal two-dimensional disturbances, denoted by 
primes, to the system defined by (2.1)-(2.7). After substitution into the governing 
equations and boundary conditions, we linearize the system and obtain the following 
linear disturbance equations : 

( 2 . 1 0 ~ )  

(2.10b) 

v! z ,  a . = o  3 (2.104 
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(2.10d, e )  

We cannot a t  this stage introduce normal modes to simplify (2.10) because of the 
appearance of the term SR-l- a,- = SR-' + ti'( 1) x in the normal component of the 
surface-stress boundary condition (2. log). This term represents the change in surface 
tension along the interface due to the linear temperature field in the x-direction and 
the linear change in surface tension with temperature. If the surface tension does not 
change much over the characteristic wavelength of a disturbance A ,  i.e. if 

h -g SR-l, (2.1 1 )  

then we can approximate the term S R - l + d ( l ) x  in (2.1Og) by SR-l. In this 
approximation, we suppress any effect that the variable surface tension might have 
in the normal-stress boundary condition. 

In an alternative approximation, we take the derivative with respect to 2 of the 
normal component of the surface-stress boundary condition (2. log) such as one would 
do to eliminate the pressure term. 

(2.12) 
d 

ax 2-1 dz 

We obtain 
- El ~ y j . ,  + [SR-l-q,, 11 q,,, + 2 -a ( 1 )  v;,. 

The variable surface tension gives rise to a normal-stress gradient, i.e. - aF/axl,,, v;,, 
that does not vary linearly in x. If the approximation (2.11) is made now, we can 
neglect the linearly varying part of the surface tension and obtain the following 
equivalent form of the normal-stress boundary condition : 

(2.104 
This second approximation is the one employed in the present analysis. 

We can now introduce a disturbance system function y? defined by 

ur = y?,, WI = -y?x ,  

and normal modes defined as 

(2.13a, b )  

[y?(x, 2, t).p'(x, z, t ) ,  P ( x ,  2, t ) ,  ~ ' ( 2 ,  t)l = (W),  P(z) ,  e ( z ) ,  f )  exp [ia@-ct)l, (2.14) 

where a = 2n/h > 0. The complex eigenvalue 

c = c,+ic, (2.15) 

consists of the phase speed C, and the growth rate acI of the disturbances. 
The forms (2.13) and (2.14) are substituted into (2.10), where cross-differentiation 

is used to eliminate P(z),  and the kinematic condition (2.10f) is used to eliminate f .  
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The following Orr-Sommerfeld system is obtained : 

(D2-a2)2 $ = iaR[(C-c) (D2-a2) $ -a”$], 

(D2 - a2) 8 = R Pr [ia(a- c) 8+ % 4’- iae $1, 

$ ( O )  = $’(O) = W(0) = 0, 

(2 .16~)  

(2.16b) 

(2.16c, d,  e) 

$’”( 1) -(iaR[a(l) -c] + 3a2) $’( 1)+ 

where D = d/dz, primes also denote d/dz and subscripts on 
differentiation. The approximation (2.11) can be written in terms of a as 

denote partial 

2nR 
-4 1. 
aS 

(2.17) 

From the solution of (2.16) we obtain the critical values of R and a as functions 
of 8, Pr and B. We then verify a posteriori that these values satisfy the inequality 
(2.17). This check establishes the parameter range in which the theory is reasonable. 

As we shall see shortly, the mechanism of the resulting surface mode of instability 
is a hydrodynamic one. Thus the Reynolds number rather than the Marangoni 
number is the appropriate parameter to use to predict the onset of the instability. 

3. The inviscid problem for the linear flow 
Following Miles (1960), we define a reciprocal Weber number 

W-l = SR-2, (3.1) 

and examine the leading-order approximation of (2.16) as R-t  00 with W fixed. With 
the basic-state velocity @(z) = z we obtain the following inviscid stability problem 
from the momentum equation: 

$“-a2$ = 0, ( 3 . 2 ~ )  

$40) = 0, (3.2b) 

In this limit the momentum equation (2.16a) decouples from the thermal field 
because the tangential-stress boundary condition (2.16 f )  is dropped. The eigenvalue 
c which governs the inviscid stability of the thermocapillary layer can be found by 
solving system (3.2). This system also governs the inviscid stability of the isothermal 
problem studied by Smith & Davis (1982). Therefore the results of that analysis also 
apply to the thermocapillary layer, i.e. the layer is inviscidly stable and a sufficient 
condition for stability as R-+ 00 is W-l 2 4 or R < (3S)i. For large R then, the 
stability of the thermocapillary layer is determined by the stability of the isothermal 
layer. 
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The thermal field in this limit has two distinct forms depending on the value of 
the Prandtl number. 

3.1. Pr = 0 

When Pr = 0, the thermal field can be solved exactly in terms of the velocity field 
even without the added condition that R+ 00. The energy equation from (2.10) has 
the form 

V 2 T  = 0, (3.3a) 

- 0  on z = O ,  
a T  
aZ 
-- 

- 

a T  . aT 
-&=BT' on z =  1 .  ax + 

Using normal modes the solution 

-- 
a2 

T'= 

of (3.3) is 
- 

aT - cosh az ax 
a sinh a + B cosh a Tz '  

(3.3b) 

(3.34 

(3.4) 

In  this case, the temperature field is controlled by conduction effects and is forced 
by a heat flux at the free surface due to the interaction of the horizontal temperature 
gradient with surface rotation. 

3.2. Pr =I= 0 

When Pr =k 0 and Pr = 0(1) as R+ 00,  the temperature field is dominated by 
convection effects. The energy equation reduces to the right-hand side of (2.16b). 
Boundary conditions are dropped so that we can solve from 13 from (2.16b) and obtain 

(3.5) 

Here we note that the kinematic condition (2.10f) cast in terms of the stream function 

(3.6) 
and normal modes is 

On the free surface, the temperature perturbation written in terms of the surface 
deflection by using (3.5) and (3.6) is 

r ^ = - -  
U ( 1 ) - c '  

- 
T'=-T, f  on z =  1 .  (3.7) 

= [ ~ + ~ 7 ' + T ' ] , , ,  = (3.8) 

Evaluating the entire temperature field on the free surface and using (3.7) yields 
- 

Thus, in the limit R+ 00, the free surface of the layer is maintained a t  its basic-state 
temperature and no thermocapillary stresses are possible. 

4. Method of solution for finite R 
We solve the eigenvalue problem (2.16) numerically using a computer code called 

SUPORT written by Scott & Watts (1975, 1977). This code employs a shooting 
method, and during the integration process orthonormalization is used to maintain 
a linearly independent set of solution vectors. I n  addition, the secant method is used 
to converge to system eigenvalues. 
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FIQURE 1. Neutral-stability curves for the linear flow with S = 10'. Curve (a) is for the isothermal 
problem of Smith & Davis (1982) and (b) is for the thermocapillary layer with Pr = 0 and B = 0. 

5. Results: linear flow 
The eigenvalue problem (2.16) is solved for Pr between 0 and 10, B between 

zero and infinity and S between lo3 and lo5. For lower values of S ,  the critical 
conditions of the resulting neutral curves violate the inequality (2.17). A typical 
neutral curve with Pr = 0, B = 0 and S = lo4 is shown in figure 1. It is compared with 
a neutral curve from the isothermal problem of Smith & Davis (1982). For a-10, both 
curves have the mme asymptote R - a-' as derived by Miles (1960) for the isothermal 
problem. As a increases the two curves diverge, with the thermocapillary curve lying 
below the isothermal curve. 

The minimum of each neutral curve defines a critical Reynolds number R,, a critical 
wavenumber a, and a critical phase speed cRc that  are functions of the non-dimensional 
surface-tension number S ,  the Prandtl number Pr and the Biot number B. The 
variation of these critical numbers with B is very weak over the entire range of the 
parameters investigated. Using the value of the critical parameters at B = 0 as a 
reference point, we find that the largest variation in R, is 6.7 yo, which occurs for 
S = lo3, Pr = 10.0 and B = CQ. For S 2 lo4 the change in R, with B is less than 2 yo 
for any Pr. The largest variation in a, is 5.7 %, which corresponds to an absolute 
change of 0.1 in a occurring at S = lo5, Pr = 10 and B = 00. The largest variation 
in cRC is 4.7 yo, which also occurs for S = lo3, Pr = 10.0 and B = CQ. 

With B = 0, we find that the changes in R,, a, and cRC as functions of Pr for various 
values of 8 are also very weak. Using the value of the critical parameters a t  Pr = 0 
as reference point we find that the maximum change in the critical Reynolds number 
is -7.30/,, occurring for S = lo3 and Pr = 10. The critical wavenumber has a 
maximum change of -7 .0% at S = lo5 and Pr = 10, and the critical phase speed 
has a maximum change of -5.9% a t  S = lo3 and Pr = 10. For small values of 
Pr < 0.01, the change of the critical numbers is less than 2 % for any S. 

Figures 2 , 3  and 4 show how R,, a, and cRC vary as functions of the surface-tension 
number S for B = 0 and Pr = 0.01. Also shown are the corresponding curves for the 
isothermal problem from Smith & Davis (1982). Figure 2 shows the stabilizing effect 
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FIGURE 2. The variation of R, with S for the linear flow with Pr = 0.01 and B = 0. Curve (a) is 
for the isothermal problem of Smith & Davis (1982) and (b) is for the thermocapillary layer. Curve 
( c )  is the inviscid limit R, = (389. The dashed portion of curve (b) is where the condition (2.17) 
is not satisfied. 
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FIQURE 3. The variation of a, with S for the linear flow with Pr = 0.01 and B = 0. Curve (a) is 
for the isothermal problem of Smith & Davis (1982) and (b) is for the thermocapillary layer. The 
dashed portion of curve (b) is where the condition (2.17) is not satisfied. 

of surface tension in that R, increases with S. For the range of S in which this theory 
is reasonable R, for the thermocapillary problem is just a little less than R, for the 
isothermal problem. Both curves asymptote to the line R = (3S)t for large S because 
as S increases R, becomes large and the inviscid limit is approached. Each point on 
these curves corresponds to a different value of ac because a, depends on S as shown 
in figure 3. As S increases, the surface becomes 'stiffer' and therefore more resistive 
to short-wavelength corrugations. This accounts for the generally decreasing behaviour 
of a, with increasing S. For the range of S in which this theory is reasonable, the 
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FIGURE 4. The variation of cRc with S for the linear flow with Pr = 0.01 and B = 0. Curve (a) is 
for the isothermal problem of Smith & Davis (1982) and (b )  is for the thermocapillary layer. The 
dashed portion of curve (b )  is where the condition (2.17) is not satisifed. 

critical wavenumber for the thermocapillary problem is always slightly larger than 
the critical wavenumber for the isothermal problem. 

Figure 4 shows that the critical phase speed cRC decreases with increasing S. As 
before, for large S the inviscid limit is approached and the decreasing behaviours of 
a, and cRC with increasing S are connected through the inviscid relation given by 
Smith & Davis (1982). The critical phase speed for the thermocapillary problem is 
always slightly less than the critical phase speed for the isothermal problem. 

Often in free-surface problems the application of linear stability theory to 
experimental observation becomes difficult because the growth rates of the disturb- 
ances are so small that the disturbances cannot be sensed until R exceeds R, by an 
appreciable amount. Hence it is of some interest to have estimates of the growth rates 
for R > R,. 

In  our estimates, we let B = 0 and fix S, Pr and a = a,. We then allow R to increase 
through R,. Note that a = a, does not necessarily correspond to the wavenumber with 
the maximum growth rate for R > R, even though it does have this property for 
R = R,. Figure 5 shows acI versus R for two values of Pr and two values of S. For 
R < R,, aeI < 0, then it increases with R ,  vanishes a t  R,, increases to a maximum 
and then decreases to zero as R + co . This decrease to zero is consistent with the fact 
that the shear flow is inviscidly stable. 

The maximum values of the growth rate are shown in table 1 along with the 
corresponding value of R at which the maximum occurs. The growth rate as a function 
of R for these values of S is very similar to the corresponding function in the 
isothermal problem shown in figure 9 of Smith & Davis (1982). There, for S = lo4 
and a = a, = 1.85, the maximum acI = 0.021 33 occurs at R = 501. Figure 6 gives the 
corresponding values of the phase speed cR as R is increased. The limiting value of 
cR for each curve in figure 6 is given in table 1. This value is obtained from the inviscid 
analysis. 
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FIGURE 5. The disturbance growth rate for the linear flow versus R. The parameter values  an^ hhe 
maximum growth rate associated with each curve are listed in table 1. 

Curve (4 
S 1 0 4  

a, 1.91 
Pr 0 

RC 324.2 
cRc 0.2825 
Rm 478.6 
aGm 0.02442 
CRa, 0.4989 

( b )  
104 

1 .o 
1.84 

331.5 
0.2905 

501.2 
0.02592 
0.4833 

(4 
1 0 6  
0 
1.87 

858.8 
0.2057 

0.01791 
0.4901 

1122 

(4 
105 

1 .o 
1.76 

876.2 
0.2151 

0.0 1947 
0.4645 

1148 

TABLE 1. The parameters associated with the curves in figures 5 and 6. All curves have B = 0. Also 
given are the critical Reynolds number R,, the critical phase speed cRc, the maximum growth rate 
acI,, the value R, of the Reynolds number at the maximum growth rate, and the limiting value 
cRm of the phase speed as R+ 00. 

6. Long-wave instabilities 
Free-surface flows can sometimes exhibit long-wave instabilities at low Reynolds 

numbers, as shown by Benjamin (1957) and Yih (1963) for film flow down an inclined 
plane. To investigate the long-wave instability of thermocapillary shear flows we use 
regular perturbation theory for a+O, R = 0 ( 1 ) ,  Pr = O(1) and B = 0 ( 1 )  on (2.16). 
The resulting eigenvalue is 

c = c , + i ~ [ P ~ R - ~ f 7 R - ~ ] + O ( a ~ ) ,  (6.1 a )  

(6.1 b )  

( 6 . 1 ~ )  

(6.1 d )  

where 
co = C’( l ) -d’ ( l ) ,  

PT = - &cO a”( 1)  -@, a’( 1 )  Pr B-l, 

f7 = a2S = 0(1). 
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When pT < 0 the system is stable to long waves. When pT > 0 the system is unstable 
to long waves, and the critical Reynolds number is given by 

Noting that for the basic state we have $iz = a”(1) and T, = - @ ’ ( l ) ,  we can say the 
following : 

(i) momentum effects are a source of instability when a disturbance travels in the 
direction df decreasing pressure ; 

(ii) thermal effects are a source of instability when a disturbance travels in the 
direction of increasing temperature. 

For the linear flow, we find that 

co = 1 ,  pT = -&PrB-l< 0 .  (6.3) 

Therefore this velocity profile is stable to long waves, consistent with our numerical 
calculations. For the retqrn flow, we obtain 

(6.4) 

Therefore we have a long-wave instability for this velocity profile for all non-zero 
values of Pr and B .  The neutral curve is given by 

co = -1 2 ,  pT = &+iPrB- l>  0 .  

R, = {l$(&+iPrB-l)-l}i, a+O. (6.5) 

The regular perturbation analysis shows that the temperature perturbation 
6 = 0(1) for all non-zero values of B .  But, when B = 0 we find that 6 = O ( a - l )  and 
that thermal effects influence the leading-order behaviour of the system. For Pr = 0 
and B = 0 the eigenvalue of (2.16) is again expressed by ( 6 . l a )  as a+O, but with 

co = G’( l ) -” ’ ( l )+gQz- l ,  ( 6 . 6 ~ )  

pT = - [~”(l)-T,I,*,]{$[a’(l)-G’’(l)]+bT,1,*1}. (6.6b) 

6 F L Y  132 

FIQURE 6. The corresponding phase speed for the linear flow versus R. The parameter values and 
the phase speed as R+oo associated with each curve are listed in table 1. 
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FIGURE 7. The computed neutral curves for the return flow with S = lo4. Curve (a) is for the 
isothermal problem of Smith & Davis (1982), ( b )  is for the thermocapillary layer with B = OC) and 
Pr = 1, (c) is with B = 1 and Pr = 0, and (d) is with B = 0 and Pr = 0. 

For the linear flow we find that 

c g = 8 ,  &=-&. (6.7) 

(6.8) c o = - 1 ,  PT=g. 

(6.9) 

Therefore this velocity profile is stable to long waves as before. For the return flow 
we obtain 

Therefore this velocity profile has a long-wave instability, with the neutral curve 
given by R, = (@!)a. 

The critical wavenumber for this instability, a = 0, corresponds to a disturbance 
with an infinitely long wavelength. However, the return flow only exists in a slot of 
large but finite length. It is reasonable to assume that the slot ends will tend to 
stabilize those disturbances whose wavelength is larger than the length of the slot. 
Therefore, to investigate this instability in a range where it is relatively unaffected 
by the presence of the slot ends, we must extend the analytical results to larger values 
of the wavenumber. 

For the return flow, the neutral curves given by (6.5) and (6.9) were extended 
numerically to a = O(1) for various values of 8, Pr and B. For small a and 8 = O ( l ) ,  
the numerical results agreed with these equations to O(a2)  accuracy for all values of 
the parameters considered. 

Figure 7 shows numerically computed neutral curves for S = lo4. Curve (a)  is for 
the isothermal layer repeated from figure 14 of Smith & Davis (1982), and curves ( b ) ,  
(c) and ( d )  are for the thermocapillary layer with B = 00 and Pr = 1 ,  Pr = 0 and B = 1 
and Pr = B = 0 respectively. For small values of a, curves ( a ) ,  ( b )  and (c) agree, as 
shown by the long-wave analysis. 

Figure 8 shows the neutral curves for S = lo4 and for three values of Pr with 
B = Pr. When Pr = B = 10, the neutral curve is similar to the B = 00 curve of figure 
7 .  This is evidence of the decreasing sensitivity of the neutral curves on the parameter 
Pr as B gets large. 
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FIGURE 8. The computed neutral curves for the return flow with S = lo4: -*-; Pr = B = 10; 

_-- , Pr = B = 1.0 ; -, Pr = B = 0.1. 
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FIGURE 9. The computed neutral curves for the return flow with Pr = 1 ,  
B = 1 and various values of S. 

The neutral curves for Pr = B = 1 and for three values of S( = are shown 
in figure 9. As indicated in the analytical results, we see the stabilization effect of 
increasing surface tension. 

Most of the curves in figures 8 and 9 exhibit a two-branch structure. This structure 
is investigated in figure 10 for S = lo4 and B = 0. When Pr = 0, the neutral curve 
monotonically increases with a. For Pr = 0.015, the lower curve has pinched up near 
a = 0.3 and another loop has appeared from above. The interior of this upper loop 
is a region of stability. These two curves join and form the two-branch structure as 
shown for Pr = 0.1. When Pr = 1 ,  we see that the branch that represents the long-wave 

6-2 
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FIQURE 10. The computed neutral curves for the return flow with S = lo4 and B = 0:  --, 
Pr = 0; -, Pr = 0.015; ---, Pr = 0.1 ; ----, Pr = 1.0. 

instability moves away from the a = 0 axis at large values of R. This branch of the 
neutral curve is a thermal convection mode of instability that is considered in greater 
detail in SD. 

7. Discussion and conclusions 
7.1.  The linear $ow 

Because of the restriction (2.17) the stability results for the thermocapillary layer 
are liihited to large values of the surface-tension number S. In  this range, figures 2 4  
show that the critical values of R, a and cR are very close to those of the isothermal 
problem discussed in Smith & Davis (1982). The two problems are related in that 
as S gets large the critical Reynolds number increases and both problems approach 
the same limit, i.e. the inviscid limit R, = (3S)i. 

We have also seen that these critical parameters are relatively insensitive to 
changes in either the Prandtl number or the Biot number, changing at most by about 
7 % with respect to Pr = 0 and B = 0 over a large range of Pr and B.  

In  Smith (1982), a disturbance energetics analysis was done on this problem to 
determine the mechanism of instability. The results of that  analysis show that the 
disturbances receive energy from the mean flow through Reynolds stress and through 
a normal stress on the interface. These results are very similar to those of Smith & 
Davis (1982). From this evidence, one can conclude that the instability is adequately 
approximated by the associated isothermal model described in Smith & Davis (1982) 
and that the only role of the temperature field is to drive the bulk-fluid motion. 

In  table 2 we list the critical parameters obtained from this theory in dimensional 
form for molten silicon at 1410 O C .  We consider two layers, one of depth 0.1 cm and 
one of depth 1.25 cm. With the physical properties of silicon we compute S, and then 
use figures 2 4  to obtain R,, a, and cRC. For both layers S is large enough so that the 
condition (2.17) is satisfied indicating that our neglect of the varying surface tension 
in the normal-stress boundary condition is reasonable. Using these dimensionless 
critical parameters we compute the following dimensional quantities : the critical 
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Parameter Without gravity Without gravity With gravity 

p (g cm-ls-l) 0.88 x - - 
- - k (erg s-l cm-' "C-') 

P (g Cm-3) 
c p  (erg g-' "C-') 

0.32 x 107 

0.84 x 107 
- 2.5 - 

- - 
- (dyn cm-') 720 - 

y (dyn cm-' "C-') 0.43 
d (em) 0.1 1.25 1.25 
Pr 0.023 - 

cf 7.91 x 104 1.54 x lo* - 

a, 1.70 1.53 1.43 
cRc 0.125 0.085 0.075 

f,* (Hz) 42.3 0.55 0.80 
Uc (cm 5 0 )  125 32.9 58.9 

b, ("C cm-') 25.6 0.54 0.96 
ZnRJa, S 0.0057 0.0017 0.0032 
B, aF2 0.012 2.3 

- - 

- 

S 2.32 x lo6 2.91 x 107 - 

RC 3350 11700 20 900 

A, (cm) 0.37 5.1 5.5 

c;tc (cm s-l) 15.6 2.8 4.4 

- 

TABLE 2. An application of the theory to a layer of liquid silicon at 1410 O C .  The effect of increasing 
the depth of the layer and of adding gravity are illustrated. The layer has a linear velocity profile. 

wavelength A,, the critical frequencyfl, the critical surface speed U,, the critical 
phase speed cgC and the critical temperature gradient b,. For a layer 0.1 cm in depth 
the critical temperature gradient is 25.6 OC/cm and the oscillation frequency is 
42.3 Hz. Increasing the depth to 1.25 cm stabilizes the layer in that the critical 
Reynolds number increases by about a factor of 3. However, this also lowers the 
critical temperature gradient to 0.54 OC/cm and the frequency to 0.55 Hz. This 
linearized mode of instability can be visualized as a wave travelling on the interface 
of the liquid layer at a speed always less than the interfacial-fluid speed. 

Gravity can be included in this model as shown by Miles (1960) by replacing S with 
S+Ga-2 in the normal-stress boundary condition (2.169). Here G is defined as 

where g is the acceleration due to gravity. Gravity can be neglected altogether if 
Boap2 < 1, where B, is the Bond number defined as B, = Gi3-l. In a silicon layer 
of depth 0.1 cm, Boap2  = 0.012 < 1, and so gravity does not appreciably affect the 
stability of the system. For a 1.25cm layer gravitational stabilization is very 
important, as shown in table 2. The addition of gravity increases the critical Reynolds 
number by 79%. 

In the model presented above we only consider the stabilization effect of gravity 
on the interface of the liquid layer. Since this is not an isothermal layer, buoyancy 
forces in the bulk fluid can affect the flow. Since our primary interest is in the 
instability occurring in the floating-zone process in a microgravity environment, we 
have neglected these buoyancy effects. 
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7.2. The return $ow 

The condition (2.17) needed for the neglect of the varying surface-tension term in 
the normal-stress boundary condition is always satisfied in the long-wave analysis. 
With the scaling used for the surface-tension number S we find that 

2xR 2xR 
a S = B a .  

This is always much less than unity for long waves with R and 8 = O(1). 
The primary mechanism of energy transfer to long-wave disturbances in the layer 

is the work done by the tangential stresses on the interface. Through this mechanism 
thermocapillary stresses can significantly couple into the velocity field and appreciably 
affect the onset of the instability. In  fact, when PrB-' is large the instability is 
primarily of thermal origin as shown by (6.1) and (6.5). 

To eliminate the coupling between the two disturbance fields, thermocapillary 
stresses a t  the free surface must be eliminated. This can be done in two different ways. 
When Pr = O(a) ,  conduction will dominate convection and the layer behaves as a 
perfect one-dimensional conductor to O(a). When B =I= 0, no temperature perturbations 
are possible and so thermocapillary stresses cannot arise. 

For large B the surface temperature is maintained at its basic-state value. Thus 
thermocapillary stresses on the interface are eliminated directly even though 
temperature perturbations in the bulk liquid are possible. 

In the long-wave analysis of $6, the critical Reynolds number reduces to that of 
the isothermal problem of Smith & Davis (1982) in both of the above limits. Thus 
the long-wave instability can be adequately described in the limit of small Pr and/or 
large B by the corresponding isothermal model. 

The stabilization effect of gravity on the interface of the layer can be included in 
the model by replacing 8 with 8+ G in (6.1 a )  and (6.2). For S fixed and zero gravity, 
R,+O as a+O. When gravity is not zero, R, = (G/3/3,)4 as a+O. Thus the layer is 
always stable to long waves for small enough R when gravity is included. This 
fundamental change in the behaviour of the layer is expected because the condition 
for the neglect of gravity, i.e. Boa-2 4 1, is always violated for B, = 0 ( 1 )  and a+O. 
However, in the micro-gravity environment of space, Bo+O, and the results of the 
long-wave analysis with G = 0 will be valid. 

As discussed in $6, the long-wave disturbances found to be unstable in the return 
flow of the slot will be affected by the presence of the slot ends. We can expect these 

(7.3) 
effects to occur when a < 2xA. 

From the restriction of Sen & Davis (1982) that S-' = O(A4) and our scaling that 
S = O(a-2) ,  we can conclude that the long-wave analysis is only valid for 
a < A2 < 2xA. Thus the analytical result is invalid due to the effect of the end walls. 
Only by extending these results to larger values of the wavenumber through 
numerical computation, as shown in figures 7-10, can we describe instabilities that 
are only weakly affected by the presence of the endwalls. 

8. Final comments 
In the isothermal problem of Smith & Davis (1982), Squire's theorem proves that 

a two-dimensional surface wave is always the most dangerous mode. For the 
thermocapillary layer, Squire's theorem is not valid and so three-dimensional 
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FIQURE 11. The critical Marangoni number M, versus the Prandtl number for the linear flow with 
B = 0. Curve (a) is for longitudinal hydrothermal waves, ( b )  is for oblique hydrothermal waves, 
(c) is for two-dimensional hydrothermal waves, (d )  is for longitudinal rolls, ( e )  is for two-dimensional 
surface waves with S = lo6, and (f) is for two-dimensional surface waves with S = lo4. The lowest 
value of M for each Pr defines M, for the preferred mode. 

disturbances cannot be excluded. However, since the form and the mechanism of 
the surface-wave instability is the same for both of these layers we suppose that 
the two-dimensional mode will be the most dangerous mode for this instability in the 
thermocapillary layer. For the return flow, we were able to use regular perturbation 
theory for small wavenumbers on the normal-mode form of the full three-dimensional 
disturbance equations to  show that a two-dimensional mode does indeed correspond 
to  the most dangerous long-wave disturbance. 

We must now compare the results for the surface-wave instability with those of 
the three-dimensional instabilities of SD so that we can infer the preferred mode of 
instability as a function of the system parameters. 

The three-dimensional thermal instabilities of SD were described in the limit of a 
non-deformable free surface, i.e. for S+ CQ. As S decreases from infinity, the critical 
Marangoni numbers associated with these modes will decrease slightly. We shall 
ignore this change in the following comparison. 

I n  figure 11 we repeat the curves of M, versus Pr for the linear flow from figure 13 
of SD and add two more curves corresponding to  surface waves a t  two values of 
S and B = 0. For each of these curves M, - Pr as Pr-tO. Since M ,  - Pri as Pr+O 
for hydrothermal waves, surface waves will eventually become the preferred insta- 
bility for small enough Pr. When S = lo4, surface waves are preferred for Pr < 0.02, 
and, when S = lo5, they are preferred for Pr < 0.003. 

For the return flow in a slot, we expect the slot ends to  damp out those disturbances 
whose wavelength is larger than the slot length. The corresponding neutral curves 
would have a non-zero minimum unlike those shown in figures 7-10. We can estimate 
this minimum by using the value of R from our neutral curves that corresponds to 
a disturbance whose wavelength equals the slot length, i.e. for a = 2nA. We choose 
A = 0.1 and S = lo4 so that the condition for validity of the return-flow basic-state 
solution, i.e. S-l = @A4), is satisfied. The resulting estimates ofthe critical Marangoni 
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FIQURE 12. The critical Marangoni number M, versus the Prandtl number for the return flow with 
B = 0. Curve (a)  is for oblique hydrothermal waves, ( b )  is for longitudinal hydrothermal waves, 
(c )  is for two-dimensional hydrothermal waves, and (d )  is our estimate of M ,  for two-dimensional 
surface waves in the return flow with slot ends for A = 0.1 and S = lo4. The lowest value of Jf 
for each Pr defines M ,  for the preferred mode. 

Prandtl number 

number versus Pr with B = 0 are shown in figure 12. Also shown are the corresponding 
curves for hydrothermal waves from figure 17 of SD. When Pr < 0.15, surface waves 
are preferred. 

This crude estimate shows that surface waves are preferred in the slot over a 
considerable range of Pr. Further estimates for slightly larger A and fixed S indicate 
that increasing A stabilizes the flow and lowers the value of Pr a t  which surface waves 
become preferred. Here we see the importance of the slot ends on the ultimate 
stability of the flow field to surface waves. 
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